ºÚÁÏÍø

Skip to main content

Congratulations to Keya for a first-authored paper published in Biochemistry on ““!

Abstract

Abstract Image

Adhesion G protein–coupled receptors (ADGRs) belong to Class B2 of GPCRs and are involved in a wide array of important physiological processes. ADGRs contain a GPCR autoproteolysis-inducing domain that is proximal to the receptor N-terminus and undergoes autoproteolysis during the biosynthesis to generate two fragments: the N-terminal fragment (NTF) and the C-terminal fragment (CTF). Dissociation of NTF reveals a tethered agonist to activate the CTF of ADGRs for G protein signaling. Synthetic peptides that mimic the tethered agonist can also activate ADGRs. However, mechanisms of peptide agonist dissociation and the deactivation of ADGRs remain poorly understood. In this study, we have performed all-atom enhanced sampling simulations using a novel protein–protein interaction Gaussian-accelerated molecular dynamics (PPI-GaMD) method on the ADGRG2-IP15 and ADGRG1-P7 complexes. The PPI-GaMD simulations captured the dissociation of the IP15 and P7 peptide agonists from their target receptors. We were able to identify important low-energy conformations of ADGRG2 and ADGRG1 in the active, intermediate, and inactive states, as well as different states of the peptide agonists IP15 and P7 during dissociation. Therefore, our PPI-GaMD simulations have revealed dynamic mechanisms of peptide agonist dissociation and deactivation of ADGRG1 and ADGRG2, which will facilitate the rational design of peptide regulators of the two receptors and other ADGRs.